20. References#

[Ada84]

G. Adair. The hawthorne effect: a reconsideration of the methodological artifact. Journal of Applied Psychology, 69:334–345, 1984.

[Agr96]

A. Agresti. An Introduction to Categorical Data Analysis. Wiley, Hoboken, NJ, 1996.

[Agr02]

A. Agresti. Categorical Data Analysis. Wiley, Hoboken, NJ, 2nd edition, 2002.

[Aka74]

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19:716–723, 1974.

[Ans73]

F. J. Anscombe. Graphs in statistical analysis. American Statistician, 27:17–21, 1973.

[BHOConnell75]

P. J. Bickel, E. A. Hammel, and J. W. O'Connell. Sex bias in graduate admissions: data from Berkeley. Science, 187:398–404, 1975.

[BP79]

Trevor S Breusch and Adrian R Pagan. A simple test for heteroscedasticity and random coefficient variation. Econometrica: Journal of the econometric society, pages 1287–1294, 1979.

[BF74]

M. B. Brown and A. B. Forsythe. Robust tests for equality of variances. Journal of the American Statistical Association, 69:364–367, 1974.

[CS63]

D. T. Campbell and J. C. Stanley. Experimental and Quasi-Experimental Designs for Research. Houghton Mifflin, Boston, MA, 1963.

[CSG63]

Donald Thomas Campbell, Julian C Stanley, and Nathaniel Lees Gage. Experimental and quasi-experimental designs for research. Houghton, Mifflin and Company, 1963.

[Coc54]

W. G. Cochran. The $\chi ^2$ test of goodness of fit. The Annals of Mathematical Statistics, 23:315–345, 1954.

[Coh88]

J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum, 2nd edition, 1988.

[Cramer46]

H. Cramér. Mathematical Methods of Statistics. Princeton University Press, Princeton, 1946.

[Dun61]

O.J. Dunn. Multiple comparisons among means. Journal of the American Statistical Association, 56:52–64, 1961.

[Ell10]

P. D. Ellis. The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results. Cambridge University Press, Cambridge, UK, 2010.

[Ell02]

Michael Ellman. Soviet repression statistics: some comments. Europe-Asia Studies, 54(7):1151–1172, 2002.

[EBP83]

J. St. B. T. Evans, J. L. Barston, and P. Pollard. On the conflict between logic and belief in syllogistic reasoning. Memory and Cognition, 11:295–306, 1983.

[EHP11]

M. Evans, N. Hastings, and B. Peacock. Statistical Distributions (3rd ed). Wiley, 2011.

[Fis22a]

R. A. Fisher. On the interpretation of $\chi ^2$ from contingency tables, and the calculation of $p$. Journal of the Royal Statistical Society, 84:87–94, 1922.

[Fis22b]

R. A. Fisher. On the mathematical foundation of theoretical statistics. Philosophical Transactions of the Royal Society A, 222:309–368, 1922.

[Fis25]

R. A. Fisher. Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh, UK, 1925.

[GS06]

A. Gelman and H. Stern. The difference between “significant” and “not significant” is not itself statistically significant. The American Statistician, 60:328–331, 2006.

[Hay94]

W. L. Hays. Statistics. Harcourt Brace, Fort Worth, TX, 5th edition, 1994.

[Hed81]

L. V. Hedges. Distribution theory for glass's estimator of effect size and related estimators. Journal of Educational Statistics, 6:107–128, 1981.

[HO85]

L. V. Hedges and I. Olkin. Statistical Methods for Meta-Analysis. Academic Press, New York, 1985.

[HMC05]

R. V. Hogg, J. V. McKean, and A. T. Craig. Introduction to Mathematical Statistics. Pearson, Upper Saddle River, NJ, 6th edition, 2005.

[Hol79]

S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6:65–70, 1979.

[Hot04]

D. Hothersall. History of Psychology. McGraw-Hill, 2004.

[Hsu96]

J. C. Hsu. Multiple Comparisons: Theory and Methods. Chapman and Hall, London, UK, 1996.

[Ioa05]

John P. A. Ioannidis. Why most published research findings are false. PLoS Med, 2(8):697–701, 2005.

[Jef61]

Harold Jeffreys. The Theory of Probability. Oxford, 3rd edition, 1961.

[Joh13]

Valen E Johnson. Revised standards for statistical evidence. Proceedings of the National Academy of Sciences, pages 19313–19317, 2013.

[KuhbergerFS14]

A Kühberger, A Fritz, and T. Scherndl. Publication bias in psychology: a diagnosis based on the correlation between effect size and sample size. Public Library of Science One, 9:1–8, 2014.

[KT73]

D. Kahneman and A. Tversky. On the psychology of prediction. Psychological Review, 80:237–251, 1973.

[KR95]

Robert E. Kass and Adrian E. Raftery. Bayes factors. Journal of the American Statistical Association, 90:773–795, 1995.

[Key23]

John Maynard Keynes. A Tract on Monetary Reform. Macmillan and Company, London, 1923.

[KW52]

W. H. Kruskal and W. A. Wallis. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47:583–621, 1952.

[Lar78]

K. Larntz. Small-sample comparisons of exact levels for chi-squared goodness-of-fit statistics. Journal of the American Statistical Association, 73:253–263, 1978.

[Leh11]

Erich L. Lehmann. Fisher, Neyman, and the Creation of Classical Statistics. Springer, 2011.

[Lev60]

H Levene. Robust tests for equality of variances. In I. Olkin et al, editor, Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, pages 278–292. Stanford University Press, Palo Alto, CA, 1960.

[MM06]

R. E. McGrath and G. J. Meyer. When effect sizes disagree: the case of $r$ and $d$. Psychological Methods, 11:386–401, 2006.

[McN47]

Q. McNemar. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12:153–157, 1947.

[Mee67]

P. H. Meehl. Theory testing in psychology and physics: a methodological paradox. Philosophy of Science, 34:103–115, 1967.

[Pea00]

K. Pearson. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine, 50:157–175, 1900.

[Pfu11]

O. Pfungst. Clever Hans (The horse of Mr. von Osten): A contribution to experimental animal and human psychology. Henry Holt, 1911.

[SA00]

H. Sahai and M. I. Ageel. The Analysis of Variance: Fixed, Random and Mixed Models. Birkhauser, Boston, 2000.

[Sha95]

J. P. Shaffer. Multiple hypothesis testing. Annual Review of Psychology, 46:561–584, 1995.

[SW65]

S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete samples). Biometrika, 52:591–611, 1965.

[SR94]

R. R. Sokal and F. J. Rohlf. Biometry: the principles and practice of statistics in biological research. Freeman, New York, 3rd edition, 1994.

[Ste46]

S. S. Stevens. On the theory of scales of measurement. Science, 103:677–680, 1946.

[Sti86]

S. M. Stigler. The History of Statistics. Harvard University Press, Cambridge, MA, 1986.

[Stu08]

A. Student. The probable error of a mean. Biometrika, 6:1–2, 1908.

[Wel47]

B. L. Welch. The generalization of “Student's” problem when several different population variances are involved. Biometrika, 34:28–35, 1947.

[Wel51]

B. L. Welch. On the comparison of several mean values: an alternative approach. Biometrika, 38:330–336, 1951.

[Whi80]

H. White. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrika, 48:817–838, 1980.

[Yat34]

F. Yates. Contingency tables involving small numbers and the $\chi ^2$ test. Supplement to the Journal of the Royal Statistical Society, 1:217–235, 1934.